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MICROBIOTA

The maternal microbiota drives early
postnatal innate immune development
Mercedes Gomez de Agüero,1* Stephanie C. Ganal-Vonarburg,1* Tobias Fuhrer,2

Sandra Rupp,1 Yasuhiro Uchimura,1 Hai Li,1 Anna Steinert,1 Mathias Heikenwalder,3

Siegfried Hapfelmeier,4 Uwe Sauer,2 Kathy D. McCoy,1* Andrew J. Macpherson1*†

Postnatal colonization of the body with microbes is assumed to be the main stimulus to
postnatal immune development. By transiently colonizing pregnant female mice, we show
that the maternal microbiota shapes the immune system of the offspring. Gestational
colonization increases intestinal group 3 innate lymphoid cells and F4/80+CD11c+

mononuclear cells in the pups. Maternal colonization reprograms intestinal transcriptional
profiles of the offspring, including increased expression of genes encoding epithelial
antibacterial peptides and metabolism of microbial molecules. Some of these effects are
dependent on maternal antibodies that potentially retain microbial molecules and transmit
them to the offspring during pregnancy and in milk. Pups born to mothers transiently
colonized in pregnancy are better able to avoid inflammatory responses to microbial
molecules and penetration of intestinal microbes.

D
uring pregnancy, the eutherian fetus in-
habits a largely sterile environment in
utero, protected from infections by mater-
nal immunity. Rejection of the allogeneic
fetus is avoided through maternal and fe-

tal vascular separation, the immune privileged
status of the placental trophoblast, and gesta-
tionalmaternal tolerancemechanisms (1). At birth,
the situation changes dramatically as body sur-
faces becomeprogressively colonizedwithmicrobes,
directly exposing the immature neonatal immune
system to potential pathogens (2, 3). Despite
continued protection from the immunoglobulins
and antibacterial peptides in milk, the conse-
quence of this transition for human health is that
most of the worldwide mortality in children up
to 5 years old is due to infectious disease (4–6).
Immune system development is both prepro-

grammed in neonatal tissues and driven later by
exposure to pathogenic and nonpathogenic mi-
crobes (3). Germ-free mice have low immuno-

globulin concentrations; lymphopenia of lymphoid
structures; reduced bonemarrow leukocyte pools;
and aberrant innate and adaptive immune func-
tions (7, 8). It has beenwidely assumed thatmost
microbiota-driven immune alterations are post-
natal effects induced by the neonate’s ownmicro-
biota (2, 9, 10). Here, we challenge this assumption
by asking how the maternal microbiota in preg-
nancy alone affects the early postnatal immune
system of the offspring.
To achieve gestation-only colonization under

conditionswhere themice deliver their pups spon-
taneously at term, we used a system in which
pregnant dams are transiently colonized with
genetically engineered Escherichia coli HA107
(11). Because this strain does not persist in the
intestine, pregnant dams become germ-free again
before term and naturally deliver germ-free pups
(fig. S1A). Although E. coli is a minor component
of the adult human microbiota, it is commoner
in the neonatal intestine (12) and a frequent cause
of human neonatal sepsis (13).

Gestation-only colonization shapes
the intestinal mucosal innate
immune composition

Gestation-only colonization with E. coli HA107
altered the numbers of early postnatal intestinal
innate leukocytes in wild-type C57BL/6 mice. At
postnatal day 14, there was an increase in small

intestinal innate lymphoid cell (ILC) proportions
and total numbers compared with germ-free con-
trols, particularly the NKp46+RORgt+ ILC3 sub-
set (Fig. 1, A and B, and fig. S1B). Small intestinal
NKp46+RORgt+ ILC3 are described in germ-free
mice (14), but persistently increased following
transient gestational colonization, reaching amax-
imum in 14- to 21-day-old pups: This increase
persisted even after weaning (Fig. 1C and fig. S1C),
consistent with increased small intestinal ILC3
content of colonized compared with germ-free
mice (15) and the microbiota-dependent mod-
ulation of RORgt expression in this subset (16).
Increases in the expression of the cytokine
interleukin-22 (IL-22) in this population have
been observed following permanent colonization
or the introduction of segmented filamentous
bacteria to themicrobiota (17, 18). Total numbers
of IL-22–expressing cells increased in line with
the increased NKp46+RORgt+ ILC3 numbers as
a result of gestational colonization, although in-
dividual IL-22 expression levels did not change,
likely because the pups were born and raised
germ-free (fig. S1, D to F).
There was also an increase in the small and

large intestinal F4/80+CD11c+ mononuclear cells
(iMNCs) in day 14 (d14) pups born to gestation-
only colonized dams (Fig. 1, D and E, and fig. S2,
A to C), whereas the F4/80+CD11c–macrophages,
F4/80loCD11c+ dendritic cells (DCs), and the CD103+

or CD11b+ DC subpopulations were not signifi-
cantly affected (Fig. 1, D and E, and fig. S2, B to E).
The gestational effects on increased F4/80+CD11c+

iMNCswere alsomaximal betweenpostnatal days
14 to 21, and they persisted until at least 8 weeks
of age in the colon (Fig. 1F). Gestational coloniza-
tion causedno significant changes in small intestinal
ILC2 numbers (fig. S3, A and B) or in other early
postnatal innate leukocyte populations in either
systemic or intestinal tissues (table S1). These re-
sults showed that temporary colonization of a
pregnant dam has long-term consequences for
certain populations of innate lymphoid andmono-
nuclear cells in the intestines of her offspring.
We next sought to verify that the effects of

gestational E. coli on early postnatal innate leu-
kocytes would also be seen with animals stably
colonized by a different microbiota both in the
mother and after birth. We compared C57BL/6
animals carrying the defined altered Schaedler
flora (ASF) of eight microbes with germ-free con-
trols. Both small intestinal NKp46+ ILC3 and in-
testinal F4/80+CD11c+ MNC populations were
increased in pups born to stably colonized ASF
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mothers compared with germ-free controls (fig.
S4, A and B). Colonization of adult germ-free
C57BL/6 animals with an ASF microbiota for
21 days also selectively increased intestinalNKp46+

ILC3 and F4/80+CD11c+ iMNC populations (fig.
S4, C and D, and table S2). Given that the ASF
microbiota does not contain Proteobacteria, we
concluded that the innate leukocyte alterations
seen through gestation-only colonization with
E. coli are also present in mice colonized with a
defined microbiota, dominated by Bacteroides
distasonis (19). Nevertheless, given the altera-
tions in adaptive immunity when germ-freemice
are permanently colonized with amicrobiota (8),
we next assessed the extent of adaptive immune
changes after gestation-only colonization.

Maternal gestational colonization
does not affect adaptive immune
composition of pups

We found that gestation-only colonization did
not alter relative or absolute populations of B or
T cells during development in the bone marrow,
spleen, or thymus (fig. S5, A and B). Intestinal

and systemic CD4 or CD8 T cell numbers, T cell
activation status (table S3), CD4 subpopulations
(fig. S5, C to G), and intestinal microarchitecture
(fig. S6) were also generally unaffected. Because
all the neonatal mice in these experiments were
germ-free, we concluded that the well-known
microbiota-driven effects of amplification of B
and T cell numbers and resulting reorganization
of lymphoid structures result from postnatal col-
onizationwith an endogenousmicrobiota (19–21).

Maternal microbiota induces intestinal
transcriptional reprogramming in offspring

Many functions of the neonatal intestine are de-
velopmentally regulated, including transport of
nutrients, salts, and water; barrier function; and
secretion of antibacterial peptides and mucus
(22). Because different aspects of intestinal devel-
opment determine the ability of the neonate to
tolerate an incoming microbiota, we questioned
whether the changes in innate leukocytes after
gestational colonization were part of a much
wider range of adaptations triggered bymaternal
exposure to intestinal microbes. We carried out

RNA sequencing (RNA-Seq) analysis of whole
small intestinal mucosal RNA from neonates at
day 14. Unsupervised analysis showed a series of
consistent transcriptional changes in the pups
born to gestation-only colonized dams compared
with controls (Fig. 2A). The genetic and protein
interactions inferred from differentially expressed
transcripts (23) included up-regulated gene net-
works for cell division and differentiation,mucus
and ion channels, and the polymeric immuno-
globulin receptor and mononuclear recruitment,
as well as for metabolism of xenobiotics, bile
acids, complex lipids, and sugars (Fig. 2B). These
differentially expressed genes included signif-
icantly increased overall expression of signature
genes for the different Paneth cell, goblet cell, and
early/late enterocyte precursor epithelial lineages
(24, 25) (fig. S7, A to C). Transcripts for the C-lectin
Reg family and antibacterial defensin peptides
were also significantly increased in the pups of
gestation-only colonized dams compared with
controls (Fig. 2C and fig. S7D).
These results show that the maternal micro-

biota drives wide-rangingmucosal transcriptional

SCIENCE sciencemag.org 18 MARCH 2016 • VOL 351 ISSUE 6279 1297

Fig. 1. Maternal microbial exposure during pregnancy shapes the frequen-
cy of intestinal innate lymphoid and mononuclear cell populations in the
offspring. Germ-free C57BL/6 dams were transiently colonized with E. coli
HA107 (gestational colonization) or kept germ-free throughout (controls). All
offspring were analyzed by flow cytometry at day 14 after birth unless indi-
cated. (A) Representative dot plots showing Lin– (CD19–CD3–) small intestinal
lamina propria lymphocytes (upper row) and Lin–RORgt+NKp46– ILC3 (lower
row). (B) Absolute numbers (geometric mean, sample number n ≥ 5) of the
indicated Lin– small intestinal ILC populations. (C) Absolute numbers of

small intestinal Lin–NKp46+RORgt+ ILC3 at indicated time points after birth.
Data represent geometricmean±SD,n=3 to 10per timepoint. (D)Representative
dot plots showing Lin–MHC-II+ colon lamina propria intestinal mononuclear cells
(iMNCs) (upper row) and Lin–MHC-II+CD11c+F4/80lo iMNCs (lower row). (E) Ab-
solute numbers (geometric mean, n ≥ 5) of indicated Lin–MHC-II+ iMNC
populations in the colon. (F) Absolute numbers (geometricmean ± SD, n= 3 to
10 per time point) of colon Lin–MHC-II+CD11c+F4/80+ iMNCs at different time
points after birth. Data are each representative of four independent experi-
ments or show pooled data from four experiments. *P ≤ 0.05; **P ≤ 0.01.
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signatures that are consistent with adapting early
postnatal immunity and intestinal function gen-
erally to postnatal microbial colonization and
themetabolic consequences of inevitable bile salt
and dietary xenobiotic exposure, even in pups born
germ-free. Thus,many aspects ofwhatmight have
been thought of as canonical host epithelial de-
velopment and innate immunity are likely shaped
through maternal microbial colonization.

Gestational colonization effects depend
on maternal antibodies

Live intestinalmicrobes, including E. coliHA107,
generally do not penetrate the body further than
the lymphnodesdraining the intestinalmesentery
(26, 27), and we found no culturable organisms
in the placenta after treatment in our gestational
colonization experiments. It was therefore likely
that the effects of maternal gestational microbes
on early postnatal innate immunity resulted from
penetration of microbial molecular products, first
to maternal tissues, and subsequently to the fetus
or neonate. Supporting this hypothesis, we found

that serum transfer from gestation-only colonized
females to unexposed pregnant dams was suffi-
cient to shape intestinal NKp46+ ILC3 populations
in the neonates (Fig. 3A and fig. S8, A and B), but
not when immunoglobulin G (IgG) was depleted
from the serum before transfer, nor when the ser-
um was derived from gestationally colonized JH

−/−

antibody-deficient dams (fig. S8, A and B). Given
the sufficiency of serum IgG transfer, antibody
transfer from themother toher offspringwas likely
important to realize some features of early post-
natal immune development, because the gestation-
only induction of small intestinal NKp46+ ILC3 by
thematernalmicrobiota was lost in the antibody-
deficient JH

−/− strain (Fig. 3, B andC).Weconfirmed
that this effect was due to the lack of maternal
antibodies using a heterozygous strain combina-
tion approach (fig. S8C). Nevertheless, not all as-
pects ofmaternal microbiota-driven early postnatal
immune system development are antibody depen-
dent, because induction of F4/80+CD11c+ iMNCs
was preserved despite the lack of neonatal and/or
maternal antibodies (fig. S8, D and E).

Because NKp46+ ILC3 but not CD11c+F4/80+

iMNC increases are mediated through maternal
antibody-dependent mechanisms after transient
gestational colonization, we predicted that only a
subset of the many transcriptional responses at-
tributable to epithelial and other intestinal cells
would bematernal antibody-dependent. RNA-Seq
analysis was carried out in d14 ileum to compare
the responses ofC57BL/6wild-type andJH

−/−groups,
each of which was compared to germ-free con-
trols. Only a subset of up-regulated genes in all
networkswerematernal antibody-dependent (Fig.
3D and fig. S9, A to C). For example, although
RegIIIa transcript numbers were elevated in the
pups of antibody-deficient mothers, maximal up-
regulation of RegIIIb and RegIIIg was antibody
dependent (Fig. 3E and fig. S9D).

Maternal microbial molecular transfer to
the offspring

Maternal microbiota effects on the pups were
only seen when the mother was transiently
colonized during pregnancy itself (fig. S10, A
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and B). In mice, maternal IgG is transferred
across the placenta and through intestinal up-
take from the milk (28), so we used litter-swap
experiments to distinguish between antenatal
and postnatal effects of the maternal microbiota.
Although there was a nonsignificant trend to-
ward increased small intestinal NKp46+ ILC3 in
neonates born to an unmanipulated mother and
nursed by a gestation-only colonized mother,
both in utero gestation and postnatal nursing by
dams that had been colonized during pregnancy
were necessary for significant ILC3 induction
(Fig. 4A).
These results imply that maternal microbiota-

derived compounds are transferred fromthemoth-
er to the offspring and that this process is increased
in the presence of maternal antibodies. We next
considered antibody-enhanced retention of bacte-
rial products in themother and antibody-mediated
transfer of bacterial products. The first of these
effects was demonstrated by following 14C elim-
ination from metabolically labeled E. coli HA107
in wild-type and antibody-deficient mice. The
presence of antibodies significantly increased
retention of 14C-labeledmolecules in themesenteric

lymph nodes, spleen, liver, and serum for at least
36 hours compared with antibody-deficient con-
trols (Fig. 4, B andC, and fig. S11, A toD):Microbial
molecular exposure of the placenta and the fetus
was also enhanced at embryonic day 16 (E16) (Fig.
4, D and E). We also found significantly increased
radioactivity originating from maternal micro-
bial molecules in the milk, and from postnatal
intestinal mucosa and liver of wild-type pups
(Fig. 4, F to I). This shows that maternal anti-
bodies enhance the retention and transmission
ofmicrobialmolecules, although effects other than
direct microbial molecular binding cannot be
excluded. To verify that these compounds are
really ofmicrobial origin rather than the products
of secondary metabolism in the mother, we grew
HA107 on [13C]glucose so that bacterial com-
pounds became fully labeled with 13C, as judged
by mass spectrometry–shift data. Intestinal 13C-
labeled metabolite levels were equivalent wheth-
er or not the mother expressed antibodies (fig.
S12); however, after intestinal administration of
13C-labeled HA107 in C57BL/6 intravenously (i.v.)
primed mice, serum contained bacterial metab-
olites comigrating with IgG that were absent

from the serum of antibody-deficient mice (fig.
S13 and data file S5). Even if HA107 was only
delivered through the intestinal route, which does
not induce high-affinity serum IgG (11), there
was evidence of low-affinity IgG coating of E. coli
that was absent from serum of untreated germ-
free controls or from HA107-treated JH-deficient
mice (fig. S14). We therefore concluded that ei-
ther sterile bacterial fragments or small molecules
can potentially be bound to maternal IgG after
intestinal exposure.
Given that increases in NKp46+ ILC3 and com-

ponents of the mucosal transcriptome were anti-
body dependent, whereas F4/80+CD11c+ iMNCs
were induced by gestational colonization even in
pups of antibody-deficient dams, we assumed
that a number of molecular ligand–receptor sys-
tems are driving different aspects of neonatal
adaptation in response to the maternal micro-
biota. Toll-like receptor ligand signaling was not
essential for the effect (fig. S15, A and B). There
was an extensive range of bacterial-derived (13C-
labeled) molecules passed from the mother to
the offspring (Fig. 5A and fig. S16), some of which
also reached neonatal tissues (fig. S16). These
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bacterial-derived metabolites present in milk or
offspring tissues from gestationally colonizedmice
included natural microbial ligands for the aryl
hydrocarbon receptor (AhR) or their precursors
(Fig. 5, A to C, and table S4) (29). Most of these
bacterial metabolites, including the fully labeled
AhR ligands (Fig. 5C), were not enriched in the
milk of treated JH

−/− mice (Fig. 5, B and C), al-
though these data do not prove that these mol-

ecules are necessarily bound to the antibodies for
transfer. Because AhR-deficientmice have a com-
pound phenotype (30), and strain combination
experiments reveal globally nonredundant signal-
ing pathways, we took the approach of treating
pregnant germ-free mice with authentic ligands
for AhR, short-chain fatty acids, nucleotide-
binding oligomerization domain (NOD) ligands
and the retinoic acid–inducible gene I (RIG-I)

ligand. Of these, only the AhR ligand (indole-3-
carbinol, I3C) increased NKp46+ ILC3 in the
offspring of the treatedmothers (Fig. 5, D and E).
This occurred even in the absence of antibodies,
although to a significantly lower extent (fig. S17,
A and B). Although this shows that early postnatal
NKp46+ ILC3 numbers are increased in response
to aryl hydrocarbons, antibodies are not essential
for the effect provided that a sufficient dose of
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AhR ligand is transmitted from themother to her
offspring. Indeed, we found that ILC3 increases
induced by an endogenous ASF microbiota in
adult mice were also antibody independent, pre-
sumably because endogenous colonization pro-
vides a sufficient dose of bacterial ligands (fig.
S17C). We concluded that maternal antibodies
assist the transfer of microbial compounds to
the offspring, but are not independently required
to increase ILC3 numbers. Given the diversity of
maternal microbial molecular transfer, it remains
probable that other microbial molecular species
can also drive early postnatal adaptation.

Gestational colonization effects on
innate immune precursors

The elevated number of intestinal NKp46+ ILC3
and F4/80+CD11c+ iMNCs in the offspring born
to gestation-only colonized dams may result from
amplified precursor populations or increased pro-
liferation of the mature intestinal population.
Neonatal ILC3 precursors (14, 31) were not in-
creased in the liver or intestine of E17 fetuses
from gestationally HA107-colonized mice (fig.
S18, A toD).We did detect increased proliferative
capacity of small intestinalNKp46+ ILC3 isolated
from 14-day-old pups born to gestation-only
colonized dams (fig. S18, E and F). F4/80+CD11c+

iMNCs stem from CD11b+CX3CR1intLy6C+ mono-
cytes (32, 33), which were significantly increased
in the colon lamina propria of 14-day-old pups
from gestationally colonized dams (fig. S18, G
and H).

Functional impact of gestational
colonization on the early postnatal
immune system

To test whether the integrity of the early post-
natal intestine to live microbial challenge was
improved by gestational colonization, we chal-
lenged pups with the replication-competent
parent strain of HA107, E. coli JM83. Despite
equal E. coli cecal colonization at 18 hours, only
the pups of gestationally colonized mothers or
dams treated with the AhR ligand I3C could
avoid translocation of JM83 to the mesenteric
lymph nodes (Fig. 6A and fig. S19, A and B).
Because presence of HA107-specific antibodies
might contribute to E. coli–primed protection,
we confirmed these results by challenge with
Bacteroides fragilis, where HA107-induced anti-
bodies do not cross-react (Fig. 6B and fig. S19C).
To verify the role of ILC3 in intestinal integrity

(34), we exploited the fact that ILC3 can be in-
duced in adults independently of B cells and anti-
bodies (fig. S17C and table S5). Comparison of
Rag−/− and Rag−/−gc

−/− mice (which lack ILCs
as well as B and T cells) showed that ILCs were
required to mediate the microbiota-driven pro-
tection from bacterial translocation during chal-
lenge with JM83 (Fig. 6C).
Systemic immune responsiveness is also likely

shaped by gestational colonization, as tumor ne-
crosis factor–a and IL-6 proinflammatory cytokine
production was reduced in the pups’ splenocytes
after intraperitoneal lipopolysaccharide (fig.
S20). Because ILC3 are a very minor population

in the spleen, the mechanism is likely to be quite
distinct from the gestational effects on intestinal
function.
These functional readouts of gestational colo-

nization only show some of the potential benefits
of maternal microbial molecular exposure in the
pups. After challengewith replication-competent
E. coli, small intestinal RNA-Seq analysis showed
expression of antioxidant and lysosomal enzyme
networks in the pups of gestation-only colonized
dams, whereas control pups had wide-ranging
expression signatures for cellular proliferation,
cytoskeletal organization, and ribosome biosynthe-
sis (Fig. 6D and fig. S21A). Expression of some
genes for antimicrobial peptides induced by
gestational colonization also increased further
after intestinal bacterial challenge (Fig. 6E and
fig. S21B).

Conclusion

The maternal microbiota prepares the newborn
for host-microbial mutualism. This results from
microbial molecular transfer because in our ex-
perimental system, live microbes are no longer
present at birth; we do not detect live microbes
in the placenta or the neonate; and the result can
be recapitulated with sterile serum transfer. In
other words, maternal antibodies not only pro-
tect the neonate through pathogen neutraliza-
tion (4, 5), but also have a more general effect
promoting microbial molecular transfer. Short-
chain fatty acids from microbes are known to
shape the adult immune system (35, 36).We show
here that ligands for the AhR, known to drive
ILC3 expansion (37) and limit adult bacterial
translocation (38), can be derived from the ma-
ternal microbiota and shape the composition and
function of early postnatal immunity.Nevertheless,
AhR ligands are unlikely to be the onlymolecular
mechanism involved in gestational microbial
shaping.
Secretory antibodies in the milk are known

to delay the maturation of the early postnatal
immune system and determine long-term intes-
tinal microbiota composition (39–41). Here we
show that maternal antibodies also enhance mi-
crobial molecular levels in the fetus and the neo-
nate. Themolecular constituents of the maternal
microbiota are able to ready neonatal innate im-
munity in time for the tsunami of microbes that
successively colonize the intestine (42, 43). Although
these studies were focused on benign microbes, the
immune morphogenesis driven by the maternal
microbiota is likely also to benefit young mam-
mals when they encounter pathogens. Postnatal
microbial colonization is a pivotal early event in
autonomous host-microbialmutualism. Fortunately,
the maternal microbiota and maternal immunity
prepare the neonate for its inevitable challenges.
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